Course on "Advanced Statistical Physics"

School of Nano Science, for Research in Fundamental Sciences (IPM), Tehran, Iran Spring Semester 2016 (1394-1395)

Lecturer: Ali Naji (School of Physics, IPM)

Office: Room 503, Farmanieh Central Building (IPM) Email: a.naji@ipm.ir; Tel: +98-21-22280692 ext. 3039

Last updated: June 30, 2016

Further information about this course, including problem sets and term-essay topics, are available at: <u>http://physics.ipm.ac.ir/~naji/particles_SS2016.html</u>

• Subjects covered in this course:

• Part I — Equilibrium Statistical Physics

- Foundations: Closed and quasi-closed systems
 - Phase space, micro-states and statistical distributions
 - Statistical averages and ergodicity
 - Equilibrium, equilibrium fluctuations, and statistical independence
 - Liouville's theorem and the concept of statistical ensemble
 - Micro-canonical distribution in classical and quantum statistics
 - Partial equilibrium and the concept of macro-states
 - Entropy, its maximum value and other properties in equilibrium
 - The law of increase of entropy (the second law of thermodynamics)

Thermodynamics

- Temperature and its positiveness
- Adiabatic processes and generalized thermodynamic forces
- Work, heat, and the first law of thermodynamics
- Thermodynamic potentials, Maxwell & other thermodynamic relations
- Thermodynamic inequalities and stability criteria
- Nernst's theorem and the third law of thermodynamics

Canonical & grand-canonical distributions

- Canonical Gibbs distribution
- Maxwell-Boltzmann distribution
- Monatomic ideal gases
- Harmonic oscillators
- The law of equipartition
- Diatomic and polyatomic gases
- Grand-canonical Gibbs distribution

Quantum statistics

- Fermi-Dirac & Bose-Einstein distributions
- Degenerate Fermi & Bose gases
- Bose-Einstein condensation
- Black-body radiation
- Vibrations of a solid
- > Interacting classical fluids: Short-range inter-particle interactions
 - Virial expansion and cluster functions
 - Second and third virial coefficients: Hard-sphere, square-well & Lennard-Jones potentials
 - Higher-order virial coefficients
 - Van der Waals equation of state and the liquid-vapor transition

Interacting classical fluids: Coulomb interactions

- Coulomb interactions & Coulomb fluids in soft matter and biology (slide presentation)
- Primitive model of multi-component Coulomb fluids ("ionic mixtures" or "electrolytes")
- Mean-field theory: The nonlinear Poisson-Boltzmann equation
- Linearized mean-field theory
 - Debye-Hückel theory ("Yukawa" plasmas)
 - Break down of the virial expansion & the origin of Debye screening
 - Singular correlation corrections to the equation of state (bulk limiting laws)
- Electrical double layers: The (mean-field) Gouy-Chapman theory
- Confined one-component ("counterion-only") Coulomb fluids
 - Counterions at a single charged wall: Mean-field density profile
 - Counterions between two charged walls: Effective counterion-mediated interactions
 - Derjaguin-Landau-Verwey-Overbeek theory of colloidal stability (slide presentation)
 - Recent advances in theory & simulations of confined Coulomb fluids (*slide presentation*)

✤ Part II — Equilibrium phase transitions and critical phenomena

- **General aspects and examples** (*blackboard & slide presentation*)
 - Bulk phases and phase transitions in simple fluids & ferromagnets
 - Classifications of (bulk) phase transitions: Thermodynamic non-analyticities
 - Discontinuous (first-order) transitions: Phase separation & coexistence region
 - Continuous (second-order) transitions: Critical points
 - Multicritical points & other typical features of phase diagrams
 - Modern perspective on phase transitions
 - Criticality, correlations, scaling & universality
 - Critical exponents: Experiments, simulations & theory
 - Critical exponents: Thermodynamic inequalities
 - Examples from liquid crystals to lipids to superfluids to superconductors
 - Order parameter & broken symmetry

Ising model

- Ising model in one dimension
 - Exact transfer matrix solution, spin correlations & correlation length
 - Kinks & the absence of finite-*T* spontaneous magnetization
 - Nature of the singularity & phase transition at T = 0
- Ising model in two dimensions
 - Domain walls & the existence of finite-*T* phase transition
 - Critical exponents (Onsager's exact results)
 - Mean-field theory in arbitrary dimension
 - Weiss molecular-field theory
 - Bragg-Williams (variational) approximation
 - Infinite-range (or infinite-dimensional) Ising model
 - Mean-field phase diagrams: First- & second-order transitions
 - Ising critical exponents: Mean field vs exact vs simulation results

Landau mean-field theory

- Landau-Ginzburg phenomenology
- ϕ^4 theory
 - Spontaneous symmetry breaking
 - Thermodynamic limit & the ergodicity breaking
 - Critical exponents: Mean-field Ising universality class
- ϕ^3 theory: Continuous *vs* discontinuous transition
- ϕ^6 theory: Tricritical point (*included in Homework #8*)

- Liquid-vapor transition revisited
 - · Virial expansion & the van der Waals equation of state
 - Maxwell construction, phase coexistence & the critical point
 - Comparison with ϕ^4 theory of ferromagnets
- Ginzburg-Landau theory of superconductivity (included in Homework #8)

Gaussian-fluctuation (one-loop) corrections

- Landau-Ginzburg-Wilson Hamiltonian
 - Field fluctuations & stiffness
 - Correlation functions & susceptibility
 - Modified singularities: Free energy & heat capacity
 - Liquid-vapor system: Critical opalescence
- Upper critical dimension & the Ginzburg criterion
- Dimensional analysis & anomalous dimensions
- Coupling to gauge fields: Anderson-Higgs mechanism (included in Homework #9)

• Widom scaling

- Homogeneous functions
- Widom scaling hypothesis
- Critical exponents: Scaling laws
- Spatial scale-invariance & hyperscaling laws
- Hyperscaling above dimension four: A paradox?

• Real-space renormalization group (RG) transformation

- Kadanoff block spins & derivation of Widom scaling
- Wilson block spins, fixed points & calculation of critical exponents
- General properties of RG flows & some characteristic fixed points
- Ising model on a triangular lattice: Real-space RG in two dimensions

✤ Part III — Non-equilibrium Statistical Physics

- Kinetic theory & Boltzmann equation
- Dissipative (Brownian) dynamics of particles
 - Random walks and Brownian motion
 - Elements of the theory of stochastic processes
 - Langevin equation: From phenomenological to formal derivation
 - (Smoluchowski-) Fokker-Planck equation