Spring Semester (2016)
School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
Lecturer: Ali Naji (School of Physics, IPM)
Tutor: Bahman Roostaei (School of Physics, IPM)
Homework \#7: Virial Expansion
Due: May 21, 2016

Note: References from which some of the following problems have been taken are available upon request.
1: A gas in d dimensions has pairwise interaction potential $\Phi\left(\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|\right)$ between its constituent particles given by

$$
\Phi(r)= \begin{cases}\infty & 0<r<a \\ -\varepsilon & a<r<b \\ 0 & b<r<\infty\end{cases}
$$

(i) Compute the second virial coefficient $B_{2}(T)$ and interpret its behavior in the limits $T \rightarrow \infty$ and $T \rightarrow 0$, both for $\varepsilon>0$ and $\varepsilon<0$.
(ii) Using $\Phi(r)$ as a model for the potential between two argon atoms in three dimensions, find suitable values of ε and of the ratio a / b, given that argon has a Boyle temperature of 410 K and a maximum Joule-Kelvin inversion temperature of 720 K .
2: Compute the second virial coefficient for the weakly coupled particles with potential $V(r)=V_{0}$ for $r<R$ and $V(r)=0$ for $r>R$.

3: The third virial coefficient can be written as

$$
\begin{equation*}
B_{3}=-\frac{1}{3} \int d \mathbf{r}_{12} \int d \mathbf{r}_{13} f\left(\mathbf{r}_{12}\right) f\left(\mathbf{r}_{13}\right) f\left(\mathbf{r}_{13}-\mathbf{r}_{12}\right) \tag{1}
\end{equation*}
$$

where $f(\mathbf{r})=e^{-\beta V(\mathbf{r})}-1$ and $V(\mathbf{r})$ is the interaction potential between particles with relative position \mathbf{r}.
(i) Show that the third virial coefficient can be written as

$$
\begin{equation*}
B_{3}=-\frac{1}{3} \frac{1}{(2 \pi)^{3}} \int d \mathbf{k} \tilde{f}(\mathbf{k}) \tilde{f}(-\mathbf{k}) \tilde{f}(-\mathbf{k}) \tag{2}
\end{equation*}
$$

where the Fourier transform of $f(\mathbf{r})$ is defined as $\tilde{f}(\mathbf{k})=\int e^{i \mathbf{k} \cdot \mathbf{r}} f(\mathbf{r})$.
(ii) Compute $\tilde{f}(\mathbf{k})$ for a gas of hard spheres with radius R.
(iii) Use part (ii) to compute the third virial coefficient for a hard-sphere gas.

4: The second virial coefficient $B_{2}(T)$ has been measured for nitrogen as a function of T (although nitrogen is diatomic, it can be shown that the single atom arguments still hold). Calculate $B_{2}(T)$ numerically for the Lennard-Jones potential

$$
\begin{equation*}
U(r)=4 \epsilon\left[\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}\right] \tag{3}
\end{equation*}
$$

with the values $\epsilon / k_{B}=95 \mathrm{~K}$ and $\sigma=3.74 \AA$. Search for the published values and compare your results with them. Don't forget to mention the references.

