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Note: References from which some of the following problems have been taken are available upon request.

1: Consider a gas of N spin-zero bosons in a d-dimensional container of volume V with a dispersion relation

εp = α|p|s, (1)

where the constant α and the index s are both positive.

(i) Find expressions for the mean number of particles per unit volume in the ground state and the mean total
number of particles in the excited states in terms of the temperature T and the fugacity z = eβµ.

(ii) Find the conditions on s and d for which Bose-Einstein condensation takes place.

(iii) Find the equation of state for this gas.

(iv) Find the relative population of the ground state N0/N as a function of temperature, assuming that N/V
is fixed.

(v) Find the entropy per unit volume of the gas in terms of T and z.

(vi) Assuming that N/V is fixed, evaluate the discontinuity in the specific heat at the critical temperature.
Show that for d = 3 and s = 2, there is no discontinuity.

(vii) Evaluate the discontinuity in the derivative of the specific heat at the critical temperature for the case
d = 3 and s = 2.

(viii) When there is condensation, it is possible to regard the particles in the ground state and those in excited
states as two distinct phases coexisting in the same container. Find the latent heat per particle for the transition
between these two phases and verify that the Clausius-Clapeyron equation is obeyed.

2: The first observation of Bose-Einstein condensation in a dilute atomic vapour was achieved by M. Anderson
et al. [Science 269, 198 (1995)]. The condensed state was produced in a vapour of 87Rb that was confined by
magnetic fields and was evaporatively cooled. The first evidence of condensation appeared at a temperature of
about 170 nK with 2.5 × 1012 atoms cm−3. Compare the condensation temperature obtained in this seminal
experiment with the critical temperature for an ideal Bose gas at the same density.

3: Consider a three-dimensional gas of bosons for which the single-particle energy is given by

εp,n =
|p|2

2m
+ αn, (2)

where α is a positive constant and n = −j, . . . , j is an integer.

(i) Find expressions, valid in the thermodynamic limit, for the pressure P and the mean number of particles
per unit volume N/V in terms of the temperature T and the fugacity z = eβµ.

(ii) Write down the condition for Bose-Einstein condensation.

4: Consider a gas of N electrons contained in a box of volume V , whose walls have N0 absorbent sites, each of which
can absorb one electron. Let −ε0 be the energy of an electron absorbed at one of these sites and |p|2/2m the
energy of a free electron.

(i) For N > N0, find the limits as T → 0 and T → ∞ of the number Na of absorbed electrons and the number
Nf of free electrons.

(ii) For N = N0, find the chemical potential µ(T ) and the particle numbers Na(T ) and Nf (T ) at low temper-
atures.

5: Pauli Paramagnetism. Consider a gas of N electrons contained in a box of volume V in presence of a uniform
magnetic field B such that the (Zeeman) energy of an electron with spin sB = +1/2 is −αB and the energy
of an electron with sB = −1/2 is αB where sB is the component of spin in the direction of the magnetic field.
Assume that the electrons are free and their kinetic energy is |p|2/2m.
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(i) Explain what α is.

(ii) Find the number of spin 1/2 (N↑) and −1/2 (N↓) at T = 0 in terms of the chemical potential of the gas µ.

(iii) Argue that the chemical potential of the gas at T = 0 is the same as its Fermi energy, εF .

(iv) For weak fields |αB| ≪ εF , show that the magnetization of the gas is

M = µB (N↑ −N↓) ≈
3

2
Nµ2

B

B

εF
. (3)

What is µB?

(v) From the above, find the ground-state susceptibility of the gas.

(vi) At finite temperatures T ̸= 0, write down an integral expression for the magnetization using the Fermi-
Dirac distribution function. As you can see, this expression has an unknown, i.e., the chemical potential µ.
Write down another integral expression which is supposed to determine the chemical potential.

(vii) Using Sommerfeld expansion valid at temperatures much lower than the Fermi temperature T ≪ εF /kB
approximate the integrals in the previous part. Also expand the Fermi-Dirac distribution functions for weak
magnetic fields to show that the magnetization at low temperatures is

M(T ) ≈
3Nµ2

BB

2εF
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. (4)


