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Note: References from which some of the following problems have been taken are available upon request.

1: Consider an ideal classical diatomic gas whose molecules have an electric dipole moment µµµ. The system is contained
in a box of volume V, with a uniform applied electric field E. Ignoring interactions between molecules,

(i) find the electric polarization P as a function of temperature (T ),

(ii) plot the polarization function as a function of µµµ ·E/k
B

T . Interpret the behavior shown by the plot.

(iii) Finally calculate the dielectric constant of the gas in the low-field limit µµµ ·E ⌧ k
B

T.

2: The potential energy between the atoms of a hydrogen molecule can be modelled by means of the Morse potential

V (r) = V0

h
e�2(r�r0)/a � 2e�(r�r0)/a

i
(1)

where V0 = 7⇥ 1012 erg, r0 = 8⇥ 10�9 cm and a = 5⇥ 10�9 cm. Using the results from quantum mechanics
for energy levels of a rigid rotor and also for an oscillator:

(i) Find the lowest angular frequency of rotational motion and the frequency of small-amplitude vibrations.

(ii) Estimate the temperatures T
rot

and T
vib

at which rotations and vibrations respectively begin to contribute
significantly to the internal energy. Which one is higher and why?

3: Consider a system of identical but distinguishable particles, each of which has two states, with energies " and �"
available to it. Use the microcanonical, canonical and grand canonical ensembles to calculate the mean entropy
per particle as a function of the mean energy per particle in the limit of a very large system. Verify that all
three ensembles yield identical results in this limit.

4: Electron trapping in a solid. Consider a solid with A identical and independent sites each of which is capable
of trapping at most one electron. We use for the magnetic moment of the electrons an Ising spin model: the
electron spin magnetic moment can only take the two values µµµ = ±µ̃ẑ corresponding to the two states(±). In
the presence of an external magnetic field B = Bẑ, the energy of a trapped electron depends on the orientation
of the magnetic moment:

"± = �u0 ± µ̃B (2)

in which u0 is the rest of the energy of a trapped electron independent of spin.

(i) Consider first the case where the number of trapped electrons is fixed at N (N  A). Calculate Z
N

(T,A),
the partition function of the system of N trapped electrons. Calculate E, the average energy of the system,
and N+, the average number of electrons with a magnetic moment in the state (+) state.

(ii) Calculate the chemical potential µ
e

of the trapped electrons. Give the expression for N in terms of µ
e

.

(iii) We now consider the grand canonical case. We assume the solid is in equilibrium with a gas of electrons
that we consider to be ideal and classical. This imposes a chemical potential µ

e

. Calculate the grand partition
function of the system Q(T,A, µ

e

),

(a) by using the partition function Z
N

explicitly,

(b) by first calculating the grand partition function of a single trap ⇠(T,A, µ).

(iv) Use ⇠ to calculate the probabilities p+ and p� for a trap to be occupied by an electron with a magnetic
moment parallel and antiparallel to B. Find the expressions for N+, N� and N . Verify that the expressions
for E obtained in the canonical and grand canonical ensembles are identical if we take N = N .

5: A one-dimensional lattice consists of N + 1 equally spaced Ising spins (Fig. 1) coupled by nearest-neighbor
exchange interactions. The Hamiltonian of the system is

H = �J
NX

j=1

S
j

S
j+1 (3)
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Figure 1. See Problem 5.

Figure 2. Two configurations with the same number of flipped spins but with di↵erent energies.

where J is a positive constant. We can see from Fig. 2 that, in this problem, flipping two neighboring spins
and flipping two distant spins generates configurations with di↵erent energies. The energy of a configuration is
determined by the number of nearest-neighbor pairs of antiparallel spins, called kinks. To obtain an elementary
kink, one flips all spins to the left (or right) of a chosen site (Fig. 3).

(i) Prove that a configuration with m kinks has the energy:

E
m

= �NJ + 2mJ (4)

(ii) Represent schematically the configurations corresponding respectively to the states of minimum and max-
imum energy E

min

and E
max

. Give the number of kinks and the degeneracies associated with these two
states.

We fix the number of kinks to m = n and, therefore, the energy is fixed at E = E
n

.

(iii) Calculate ⌦
n

, the number of states with n kinks and find the expression for the corresponding entropy
S(n,N) assuming n, N � 1. Calculate the equilibrium temperature � = 1/k

B

T as a function of n and N .

Figure 3. See Problem 5.
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Verify that it can also be written as:

� = � 1

J
tanh�1

✓
E

NJ

◆
(5)

It seems natural to associate high temperature with high energy. Is this confirmed for this spin lattice? If no,
why?

(iv) Calculate the probability p that two neighboring spins are antiparallel.

We now consider the problem in the canonical ensemble. The temperature is fixed but the energy is known
only on average.

(v) Compare the changes in the entropy and energy when the system goes from no kinks to one kink. Verify
that, for T = 0, there is no spontaneous magnetization in this one-dimensional system.

(vi) Show that the partition function of the one-dimensional Ising model may be written as:

Z = 2(N+1) (cosh�J)
N

(6)

Can one make an analogy with paramagnetism and explain why the solution of the one-dimensional Ising model
is trivial?


