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1: Derive the four Maxwell’s relations:
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2: Prove in isothermal expansion pressure always decreases, i.e.,
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3: Prove for heat capacities at constant pressure, Cp and at constant volume Cv:

Cp > Cv, Cv > 0 hence Cp > 0.

4: Prove in adiabatic expansion the temperature of the body falls or rises depending on the sign of the thermal
expansion coefficient, αp = V −1(∂V/∂T )P .

5: Prove that adiabatic compressibility is always smaller in absolute value than isothermal compressibility.

6: Measuring absolute temperature using an arbitrary body whose equation of state is not known a priori: Assume
T is the absolute temperature that we need to measure, τ is the arbitrary scale by an arbitrary calibrated
“thermometer”. Then prove that we have for the one-to-one function T (τ):
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in which ∂̄ is the incomplete partial. Hint: Start with the following relation (in which all the quantities refer
to the body in question):
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i) Interpret this result.
ii) T is determined to within a constant. Why? What is its meaning ?

7: Derive Liouville’s equation governing the probability density function of a closed Hamiltonian system in phase
space. Can this equation describe the relaxing time-evolution of the probability density function to its equi-
librium value? Justify your answer. Explain how relaxation to equilibrium state is achieved in real systems,
which cannot mostly be assumed as closed.


