Course on "Statistical Physics of Fields In and Out of Equilibrium"

School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran Spring Semester 2016 (1394-1395) / Code (IPM): 113558

Lecturer: Ali Naji (School of Physics, IPM)

Office: Room 503, Farmanieh Central Building (IPM) Email: a.naji@ipm.ir; Tel: +98-21-22280692 ext. 3039

Last updated: June 30, 2016

- Further information about this course, including problem sets and term-essay topics, are available at: <u>http://physics.ipm.ac.ir/~naji/fields_SS2016.html</u>
- Subjects covered in this course:

Statistical Physics of Fields In Equilibrium

- ✤ Part I Preliminaries
 - > Statistical physics and thermodynamics of many-particle systems
 - A conceptual review in four lectures based on the classic text by Landau & Lifshitz (Vol. 5)
 - Statistical fields: A scenery (slide presentation)
 - Spin & particle models: From classical to modern examples
 - Modern applications of statistical field theory in soft & condensed matter physics

• Statistical field theory: Basic methods

- Construction of continuum field actions
 - Coarse-graining of microscopic Hamiltonians
 - Symmetries & phenomenological actions (or effective 'Hamiltonians')
- Classical field theory
 - Calculus of variations
 - The least-action principle & Euler-Lagrange equations
 - Continuous symmetries & Noether's theorem
 - Energy-momentum (or stress-energy) tensor
- Fluctuating fields & functional-integral methods
 - Path integrals: An overview
 - Functional integrals & the partition function
 - Generating functionals & connected correlation (Green) functions
 - Response functions & the fluctuation-dissipation theorem
 - Gaussian integrals & Wick's theorem ('free field theory')
 - Formal perturbative expansion of field interaction
 - Feynman diagrams
- Other routes to constructing field theories
 - A modern (re)formulation of the Hubbard-Stratonovich transformation
 - Construction of exact field theories: From *O*(*n*) model to Coulomb fluids
 - Edwards-Gupta method: Effective field theory for Ising & *O*(*n*) models
- Saddle-point method
 - Mean field theory as a steepest descent (saddle-point) approximation
 - Loop expansion & Gaussian-fluctuation (one-loop) corrections
 - Saddle-point approximation in the presence of zero modes (included in Homework #15)
 - Other useful techniques (applicable to Part II)
 - Schwinger-Dyson equations
 - Ward identities (*included in Homework* #7)

- Functional determinants (applicable to **Part III**)
 - Van Vleck-Pauli-Morette (VVPM) formula
 - Spectral ζ-functions & heat kernel: An overview
 - ζ-function regularization
 - Gel'fand-Yaglom (GY) formula: Contour integration approach
 - Coleman's proof of GY formula (included in Homework #9)
 - Equivalence of VVPM & GY formulas (included in Homework #9)
- Zero modes (applicable to **Part IV**) (*included in Homework* #15)
 - Continuous symmetry & Goldstone modes
 - Gaussian-fluctuation (one-loop) corrections in the presence of zero modes
 - Perturbative expansion in the presence of zero modes
- Part II Field theory for Coulomb fluids (or "Coulomb gases")
 - Coulomb interactions & Coulomb fluids in soft matter and biology (slide presentation)
 - Coulomb fluids: General formalism
 - Exact field action *via* Hubbard-Stratonovich transformation
 - Mean-field theory
 - Multi-component Coulomb fluids ("ionic mixtures" or "electrolytes")
 - Saddle-point approximation: The nonlinear Poisson-Boltzmann equation
 - Electrical double layers: The Gouy-Chapman theory
 - Linearization approximation: The Debye-Hückel theory
 - Generalized electrostatic stress tensor (not covered in this Course)
 - Confined one-component ("counterion-only") Coulomb fluids
 - Counterions at a single charged wall: Mean-field density profile
 - Counterions between two charged walls: Effective counterion-mediated interactions
 - Beyond mean-field theory (I): Weak-coupling regime
 - Bulk ionic mixtures ("Yukawa" plasmas)
 - Quadratic Debye-Hückel field action
 - Break down of the virial expansion & the origin of Debye screening
 - Singular correlation corrections to the equation of state (bulk limiting laws)
 - Confined one-component ("counterion-only") Coulomb fluids: One-loop corrections
 - Fluctuation corrections to counterion density: One & two walls (*included in Homework #8*)
 - Gaussian-fluctuation corrections to counterion-mediated interactions between two walls
 - Beyond mean-field theory (II): Strong-coupling regime (slide presentation)
 - Weak vs strong couplings: A unified field-theoretic approach
 - Strong-coupling theory: Virial expansion restored for confined Coulomb fluids
 - Recent advances in the theory & simulations of confined Coulomb fluids
- Part III Fluctuation-induced phenomena (Casimir & pseudo-Casimir effects)
 - A plethora of fluctuation-induced phenomena (slide presentation)
 - Examples from quantum vacuum fluctuations to superfluid films to liquid crystals to Derjaguin-Landau-Verwey-Overbeek theory of colloidal stability
 - Quantum vacuum & electromagnetic field fluctuations
 - Non-retarded Casimir forces: Perfect "mirrors" at zero temperature
 - Thermal (classical) Casimir forces: Massless fields at high temperature
 - Lifshitz theory for dielectrics at finite temperature: Retardation effects
 - Fluctuation-induced effects in correlated liquids
 - Pseudo-Casimir forces in superfluid helium films
 - Pseudo-Casimir forces in nematic liquid-crystalline films (*included in Homework #10*)

Fluctuation-induced effects in Coulomb fluids

- Massive field fluctuations & Pseudo-Casimir effect in "Yukawa" plasmas
- Fluctuations on a non-uniform background: Confined Coulomb fluids revisited

✤ Part IV — Phase transitions and critical phenomena

- **General aspects and examples** (blackboard & slide presentation)
 - Bulk phases and phase transitions in simple fluids & ferromagnets
 - Classifications of (bulk) phase transitions: Thermodynamic non-analyticities
 - Discontinuous (first-order) transitions: Phase separation & coexistence region
 - Continuous (second-order) transitions: Critical points
 - Multicritical points & other typical features of phase diagrams
 - Modern perspective on phase transitions
 - Criticality, correlations, scaling & universality
 - Critical exponents: Experiments, simulations & theory
 - Critical exponents: Thermodynamic inequalities
 - Examples from liquid crystals to lipids to superfluids to superconductors
 - Order parameter & broken symmetry

Ising model

- Ising model in one dimension
 - Exact transfer matrix solution, spin correlations & correlation length
 - Kinks & the absence of finite-*T* spontaneous magnetization
 - Nature of the singularity & phase transition at T = 0
- Ising model in two dimensions
 - Domain walls & the existence of finite-*T* phase transition
 - Critical exponents (Onsager's exact results)
- Mean-field theory in arbitrary dimension
 - Weiss molecular-field theory
 - Bragg-Williams (variational) approximation
 - Infinite-range (or infinite-dimensional) Ising model
 - Mean-field phase diagrams: First- & second-order transitions
- Ising critical exponents: Mean field vs exact vs simulation results
- Yang-Lee theory of phase transitions (*not covered in this Course*)
- Landau mean-field theory
 - Landau-Ginzburg phenomenology
 - ϕ^4 theory
 - Spontaneous symmetry breaking
 - Thermodynamic limit & the ergodicity breaking
 - Critical exponents: Mean-field Ising universality class
 - ϕ^3 theory: Continuous *vs* discontinuous transition
 - ϕ^6 theory: Tricritical point (*included in Homework #11*)
 - Liquid-vapor transition
 - Virial expansion & the van der Waals equation of state
 - Maxwell construction, phase coexistence & the critical point
 - Comparison with ϕ^4 theory of ferromagnets
 - Ginzburg-Landau theory of superconductivity (included in Homework #11)

Gaussian-fluctuation (one-loop) corrections

- Landau-Ginzburg-Wilson Hamiltonian
- Field fluctuations & stiffness
- Correlation functions & susceptibility
- Modified singularities: Free energy & heat capacity

- Liquid-vapor system: Critical opalescence
- Upper critical dimension & the Ginzburg criterion
- Dimensional analysis & anomalous dimensions

Widom scaling

- Homogeneous functions
- Widom scaling hypothesis
- Critical exponents: Scaling laws
- Spatial scale-invariance & hyperscaling laws
- Hyperscaling above dimension four: A paradox?

Real-space renormalization group (RG) transformation

- Kadanoff block spins & derivation of Widom scaling
- Wilson block spins, fixed points & calculation of critical exponents
- General properties of RG flows & some characteristic fixed points
- Ising model on a triangular lattice: Real-space RG in two dimensions

Momentum-space RG transformation

- RG scheme revisited: Coarse grain, rescale & renormalize
- Gaussian model: Exact solution & RG analysis
- Dangerous irrelevant variables: Hyperscaling revisited
- ϕ^4 theory
 - Perturbative RG & Feynman diagrams
 - ϵ -expansion & critical exponents to order $O(\epsilon)$
 - Supplementary remarks
 - Finite anomalous dimension to order $O(\epsilon^2)$
 - Asymptotic behavior of ϵ -expansion
 - Results from resummation techniques
 - Ising universality class: Comparison with experiments & simulations

Continuous symmetry

- Discrete symmetry breaking: Domain walls revisited
- Continuous symmetry breaking
 - Goldstone modes: Examples from crystalline solids to (Heisenberg) ferromagnets to liquid crystals to superfluid Helium
 - Goldstone's theorem revisited
 - Massless fluctuations & the lower critical dimension
 - Mermin-Wagner (-Hohenberg-Coleman) theorem
- Coupling to gauge fields: Anderson-Higgs mechanism (included in Homework #12)
- **Other subjects** (not covered in this Course | potential subjects for term essays)
 - Nonlinear σ model: Critical behavior near dimension two
 - XY model, topological defects & the Kosterlitz–Thouless transition
 - RG for the two-dimensional Coulomb gas
 - Two-dimensional solids & melting

Statistical Physics of Fields Out of Equilibrium

✤ Part V — Dissipative dynamics of fields near and far from equilibrium

- Dissipative (Brownian) dynamics of particles
 - Elements of the theory of stochastic processes
 - Langevin equation: From phenomenological to formal derivation
 - (Smoluchowski-) Fokker-Planck equation
 - Path-integral formulation of Brownian motion

• **Dissipative dynamics of fields: A scenery** (*slide presentation*)

- Models of dissipative field dynamics: Examples from nucleation & spinodal decomposition to elastic membranes & growing surfaces to active fluids & bacterial suspensions
- Critical dynamics & dynamic scale-invariance near equilibrium
 - Non-conserved dynamics (Model A: Stochastic time-dependent Landau-Ginzburg equation)
 - Conserved dynamics (Model B: Stochastic Cahn-Hilliard equation)
 - An overview of dynamic perturbation theory
- Critical dynamics & dynamic scale-invariance far from equilibrium (slide presentation)
 - Kardar-Parisi-Zhang equation
 - Dynamic RG at a glance: The KPZ universality class
- Field theory for stochastic partial differential equations
 - Langevin-type partial differential equations
 - Generalized (Smoluchowski-) Fokker-Planck equation (included in Homework #16)
 - Basics of functional-integral representation & the Martin-Siggia-Rose action