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Note: References from which the following problems have been adopted are available upon request.

! Functional determinants are encountered in many physical applications of field theory and path-integral techniques,
including the saddle-point evaluation of partition functions and calculation of Casimir/pseudo-Casimir forces, both
topics covered in detail in this Course. In the class, we discussed a couple of different methods to evaluate functional
determinants, including the Van Vleck-Pauli-Morette (VVPM) and Gel’fand-Yaglom (GY) formulas.

In Problem 1 of this homework set, the two above-mentioned methods are revisited in the context of Gaussian path
integrals and are shown to be formally equivalent.

In Problem 2, we consider an alternative proof for the GY formula that was derived in the class using contour inte-
gration methods (see, e.g., K. Kirsten and A.J. McKane, “Functional determinants by contour integration methods”,
Annals of Physics 308, 502 (2003)). The method of derivation in Problem 2 is due to Sidney Coleman (and Ian
Affleck) and is outlined in a short appendix in Coleman’s lectures on “The Uses of Instantons” (1977), reprinted in
his Aspects of Symmetry: Selected Erice Lectures (Cambridge University Press, Cambridge, 1985).

1: Equivalence of the VVPM and GY formulas. Consider the path-integral expression for the propagator

K(xf , xi; tf , ti) = N

∫ x(tf )=xf

x(ti)=xi

Dx(t) eiS[x(t)]/!, (1)

with the (infinite) normalization constant and the general form of the action given respectively by

S[x(t)] =

∫ tf

ti

dt
[m

2
ẋ(t)2 − V (x(t))

]

, (2)

N =
√

m

2πi!(tf − ti)

√

det
(

−
m

2πi!
∂2t

)

. (3)

In the semi-classical (or the saddle-point) approximation, the action is expanded up to the quadratic order in
fluctuations around a classical solution xc(t) that satisfies the equation of motion mẍc(t) = −V ′′(xc(t)) with
the Dirichlet boundary conditions xc(ti) = xi and xc(tf ) = xf . Hence, the propagator is approximated by
the following expression in terms of the ratio of two determinants; namely, det(−∂2t ), corresponding to a free-
particle motion and, det(−∂2t −ω(t)2), corresponding to a harmonic oscillator motion with the time-dependent
frequency ω(t)2 = V ′′(xc(t))/m; that is,

K(xf , xi; tf , ti) ≃
√

m

2πi!(tf − ti)

√

det(−∂2t )

det(−∂2t − ω(t)2)
eiS[xc(t)]/!. (4)

The remarkable VVPM formula states that the ratio of the determinants in Eq. (4) can be calculated only
based on the classical action as

det(−∂2t )

det(−∂2t − ω(t)2)

∣

∣

∣

∣

VVPM

= −
tf − ti
m

·
∂2S[xc(t)]

∂xf∂xi
. (5)

The GY method, on the other hand, gives the ratio of the determinants as

det(−∂2t − ω(t)2)

det(−∂2t )

∣

∣

∣

∣

GY

=
Fω(tf )

tf − ti
, (6)

where Fω(t) satisfies the initial-value problem of a classical harmonic oscillator

(∂2t + ω(t)2)Fω(t) = 0, Fω(ti) = 0 and Ḟω(ti) = 1. (7)
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In other words, the original boundary-value problem defined over the interval [ti, tf ] is reduced to an initial-value
problem defined through a more straightforward, homogeneous differential equation. The remarkable point here
is that, according to Eq. (6), the ratio of the determinants is given simply by the value of the solution at the
‘end point’ of the interval. The details of the GY method were discussed extensively in the class; they are
revisited in Problem 2 below.

The equivalence of the VVPM and GY formulas, Eqs. (5) and (6), can be established through the following
steps and by proving the purely classical formula

∂2S[xc(t)]

∂xf∂xi
= −

m

Fω(tf )
. (8)

(i) The classical solution xc(t) with boundary conditions xc(ti) = xi and xc(tf ) = xf can also be regarded as
a function of the initial position and velocity, xc = xc(xi, ẋi, t). In the harmonic oscillator problem, one can
write xc as a superposition of two linearly independent solutions as xc(xi, ẋi, t) = xif1(t) + ẋif2(t). Show that

f1(ti) = 1, ḟ1(ti) = 0 and f2(ti) = 0, ḟ2(ti) = 1. (9)

(ii) Argue that f2(t) = Fω(t) is the desirable GY solution.

(iii) Denote f1(t) = Gω(t) (as the ‘dual’ GY solution) and show that xc(t) = xiGω(t) + ẋiFω(t).

(iv) Show that the classical action can be calculated in terms of the boundary values of xc(t) and ẋc(t) as

S[xc(t)] =
m

2

∫ tf

ti

dt
[

ẋc(t)
2 − ω(t)2xc(t)

2
]

=
m

2
[xf ẋc(tf )− xiẋc(ti)] . (10)

(v) Using the results from part (iii) and (iv) and the fact that the Wronskian of Gω(t) and Fω(t) is time-
independent, show that

S[xc(t)] =
m

2Fω(tf )

[

Ḟω(tf )x
2
f +Gω(tf )x

2
i − 2xixf

]

, (11)

which immediately gives Eq. (8).

2: Coleman’s proof of the GY formula. The GY formula provides a powerful method to calculate the determinant
of an operator Â without computing its eigenvalue spectrum, {λn}. For the sake of clarity, we consider here
the specific example of a one-dimensional, second-order (Schrödinger) operator Â = −∂2x + V (x) defined over
a finite interval [−a, a] with Dirichlet boundary conditions. The eigenfunctions of Â, denoted by ψn(x), satisfy
the boundary-value problem

(

−∂2x + V (x)
)

ψn(x) = λnψn(x), ψn(−a) = ψn(a) = 0. (12)

In typical physical problems, functional determinants are regularized (using, e.g., ζ-function regularization
schemes as discussed in the class) or normalized with respect to a reference operator, say Â0 = −∂2x + V0(x)
(with the common choice being the ‘free-particle’ system with V0(x) = 0), so as to render them finite. Therefore,
we introduce the quantity

D(λ) =
det(Â− λ)

det(Â0 − λ)
. (13)

The GY formula states that the desirable (normalized) determinant D(λ = 0) can be computed without having
to solve the original boundary-value problem to establish the spectrum of the operator Â (typically difficult!)
and by merely finding the homogeneous solution of the initial-value problem (much simpler!)

(

−∂2x + V (x)
)

ϕλ(x) = λϕλ(x), ϕλ(−a) = 0 and ∂xϕλ(−a) = 1. (14)
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The (normalized) determinant is then given by the value of the homogeneous solution ϕλ=0(x) at x = a as

D(λ = 0) =
ϕλ=0(a)

ϕ(0)
λ=0(a)

, (15)

which is to be proved. Note that here ϕ(0)
λ=0(x) is the homogeneous solution corresponding to the reference

operator Â0; in other words, ϕ(0)
λ=0(x) is obtained by setting V → V0 in Eq. (14).

(i) Show that D(λ) is a meromorphic function with simple zeros at λ = λn and simple poles at λ = λ(0)n and

that D(λ) → 1 for |λ| → ∞, except along the positive real axis. Here, {λ(0)n } are eigenvalues of the reference

operator Â0, whose eigenfunctions, ψ(0)
n (x), satisfy a boundary-value problem analogous to Eq. (12).

(ii) Now consider the ratio

∆(λ) =
ϕλ(a)

ϕ(0)
λ (a)

, (16)

and note that ϕλ(x) is an eigenfunction of Â with eigenvalue λ when ϕλ(a) = 0. Thus, show that ∆(λ) is a
meromorphic function with the same zeros and poles as D(λ) and that ∆(λ) → 1 for |λ| → ∞, except along
the positive real axis.

(iii) Conclude that the ratio D(λ)/∆(λ) is an analytic function that goes to 1 as |λ| → ∞ in any direction
except along the positive real axis and, therefore, it is equal to 1, leading thus to Eq. (15).


