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1: Consider a d-dimensional cubic lattice of a particular atom (or molecule) with each having a total spin S. The
full quantum mechanical Heisenberg Hamiltonian of this system is as follows:

Ĥ = J
∑

〈ij〉

Ŝi · Ŝj , (1)

in which Ŝi is the spin vector operator at the lattice site i.

(i) Using this Hamiltonian write down the equation of motion of the spin vector at each site.

(ii) Consider the following operator transformation of a single spin known as Holstein-Primakoff transformation

Ŝ+ =
(√

2S − n̂
)

b̂, (2)

Ŝ− = b̂†
√
2S − n̂, (3)

Ŝz = S − n̂, (4)

in which the operator n̂ = b̂†b̂. Show that [b̂, b̂†] = 1 to keep the right commutation relation for spins.

(iii) Assuming the expectation value of n̂ is small, expand the square roots up to the first order of n̂.

(iv) The operator n̂ counts the number of bosons excited as the z-component of the spin vector evolves. Back
to the cubic lattice system, consider the above transformation for each of the spins. Assume that the total
quantum mechanical state of this lattice system is characterized by slow variations of the spin vector throughout
the space. More specifically, assume that the z-component of each spin undergoes a slow variation throughout
the space. At low energies argue that this means the time evolution of the spins is also slow. How does the
slow time evolution relate to the evolution of n̂ in time? Argue that at low energies it is possible to treat the
spin operators as classical vectors.

(v) Use the result of part (i) and, by assuming that the quantum states of the system are all low energy states,
show that the continuum limit of the equation of motion of each spin can be derived as follows:

∂S(x)

∂t
= JS(x) ×∇2S(x). (5)

What condition(s) should J obey for such equation to be valid?

(vi) Find and sketch a wave-like solution describing small-angel precession around a globally magnetized state
S(x) = Sẑ.

(vii) Using the results of part (iii) show that for S ≫ 1 we can always treat spins classically.

2: Consider a one-dimensional chain of atoms with equilibrium inter-atomic distance of a. The classical Lagrangian
of this system is as follows:

L =

N
∑

i=1

[

MṘ2
i

2
− k

2
(Ri+1 − Ri − a)

2

]

, (6)

in which Ri is the position of the i-th atom in the chain and a is their equilibrium distance. M is the mass of
each atom and k is the inter-atomic force constant. Assuming that the displacement from equilibrium position,
denoted by ui is small, meaning |ui| = |Ri −R0

i | ≪ a, answer the following questions.

(i) Show that the Lagrangian takes the form

L =

N
∑

i=1

[

Mu̇2
i

2
− k

2
(ui+1 − ui)

2

]

. (7)
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(ii) Under what condition(s) can we take the continuum limit? This limit here is taken as ui → a1/2u(x, t),

(ui+1 − ui) → a3/2∂xu(x, t) and
∑N

i=1
→ (1/a)

∫

dx. Write down the Lagrangian in this limit.

(iii) Using the Lagrangian, find the momentum π(x, t) conjugate to the displacement field u(x, t) and show that
the Hamiltonian of the system is as follows:

H [π, u] =

∫

dx

[

π2

2m
+

ka2

2
(∂xu)

2

]

. (8)

(iv) Proceed by quantizing the above system by using quantum fields û(x) and π̂(x) and the condition

[û(x), π̂(x′)] = i~δ(x− x′). (9)

What happened to the time dependence of the fields? Why did we assume the fields are bosonic?! Write down
the Hamiltonian of this quantum field theory.

(v) Using Fourier transformation show that

Ĥ =
∑

k

[

1

2m
π̂kπ̂−k +

mω2
k

2
ûkû−k

]

, (10)

and obtain ωk. What are the allowed values of k? In the above, π̂k and ûk are the Fourier transforms of the
fields π̂(x) and û(x).

(vi) By defining

âk =

√

mωk

2

(

ûk +
i

mωk
π̂−k

)

, (11)

find the commutation relation between âk and â†k′ and show that the Hamiltonian reduces to an infinite number
of Harmonic oscillators, the so-called phonons. Phonons are quasiparticles of the above Hamiltonian. What is
the lifetime of these quasiparticles?

(vii) Calculate (or sketch the behavior of) the specific heat of the system as a function of temperature using
bosonic statistics.


