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1: Inhomogeneous Coulomb fluids. The general form of the field “action” (or Hamiltonian) for an inhomogeneous
(confined), classical Coulomb fluid, consisting of point-like mobile “counterions” of charge valency q in equilib-
rium with a thermal bath at temperature T , can be written as

S[ϕ] =
1

2

∫
drdr′ ϕ(r)G−1(r, r′)ϕ(r′) + i

∫
dr ρ0(r)ϕ(r)− λ̃kBT

∫
dr Ω(r)e−iβqe0ϕ(r), (1)

where ϕ(r) is a fluctuating potential field, β = 1/(kBT ), e0 is the elementary charge, ρ0(r) is the fixed charge
distribution in the system (or on the confining boundaries due to the presence of macroscopic and/or mesoscopic
objects) that interact with the counterions, and G(r, r′) is the general “Coulomb” kernel satisfying

− ε0∇ · [ε(r)∇G(r, r′)] = δ(r− r′) (2)

in a three-dimensional system with an arbitrary dielectric-constant profile ε(r) and with ε0 being the permit-
tivity of vacuum. Here, Ω(r) is the “blip” function identifying the spatial region accessible to counterions (see
Fig. 1).

The grand-canonical partition function of this system can be written as

Zλ̃ = e−
1
2 tr lnG(r,r′)

∫
Dϕe−βS[ϕ], (3)

where λ̃ is the rescaled fugacity. This problem generalizes the case of a dielectrically homogeneous Coulomb
fluid, with ε(r) = ε and G(r, r′) = G0(r, r′) ≡ 1/(4πεε0|r − r′|) that was discussed in class, by accounting for
the dielectric polarization (or the so-called “image-charge”) effects generated by the dielectric contrast between
the macroscopic bodies and the fluid medium, where mobile ions are present.

(i) Derive the above expression for the partition function of a grand-canonical system of counterions in equilib-
rium with a bulk reservoir of particles with fugacity λ by starting from the Hamiltonian of a canonical system
comprising N counterions, i.e.,

HN =
1

2

∫
drdr′ [ρ̂c(r) + ρ0(r)]G(r, r′) [ρ̂c(r

′) + ρ0(r′)]− q2e2
0

2
NG0(r, r′), (4)
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Figure 1. Schematic view of an inhomogeneous Coulomb fluid consisting of impenetrable, fixed, charged objects (such as
charged macromolecules) carrying the charge distribution ρ0(r) and their neutralizing, point-like, mobile counterions of charge
valency q. The fixed objects can have a different dielectric constant (e.g., a uniform dielectric constant of εp) as compared
with the fluid medium (e.g., a solvent such as water with εm ' 80 at room temperature). In regions accessible to counterions,
we have Ω(r) = 1, and elsewhere Ω(r) = 0. See Problem 1.
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where ρ̂c(r) =
∑N
i=1 qe0δ(r − ri) is the counterion charge density operator and, in the last term of the above

Hamiltonian, we have subtracted the formation energy of individual counterions (why?). Note also that λ is

the bare fugacity, which is a given parameter, while the field-theoretic “action” contains a rescaled fugacity, λ̃.
How is the latter parameter related to the former one?

(ii) Show that the density profile of counterions, which builds up in response to their interactions with the fixed
charge distribution ρ0(r) and the polarization charges on the dielectric boundaries, is given by:

nc(r) ≡ 〈n̂c(r)〉 = λ̃Ω(r)
〈
e−iβqe0ϕ(r)

〉
, (5)

where n̂c(r) =
∑N
i=1 δ(r − ri) is the counterion number density operator. Show that the expression on the

right-hand side of the above equation is real-valued and independent of the choice of the reference value for the
potential field.

(iii) How is the density profile of counterions expressed in canonical ensemble with N counterions? In order

to answer this question, you can start by explaining how λ̃ should be calculated as a function of the average
number of counterions. Then, consider the thermodynamic limit N →∞ and note also that the system must
be globally electroneutral in this limit, i.e., in a canonical system, we must have Nqe0 +

∫
dr ρ0(r) = 0.

(iv) Using Schwinger-Dyson equations discussed in class show that:

− ε0∇ · [ε(r)∇〈ϕ(r)〉] = −iρ0(r)− iqe0λ̃Ω(r)
〈
e−iβqe0ϕ(r)

〉
. (6)

Interpret this result by expressing it in terms of the Wick-rotated potential field ψ = iϕ. Expand the exponential
term on the right-hand side of the equation and show that this equation relates different field correlation
functions.

(v) Assuming that the field correlations can be ignored, derive the following closed-form partial differential
equation, known as the Poisson-Boltzmann equation, governing the mean field ψ̄(r) = 〈ψ(r)〉:

−ε0∇ ·
[
ε(r)∇ψ̄(r)

]
= ρ0(r) + qe0n̄c(r), (7)

n̄c(r) ≡ λ̃Ω(r)e−βqe0ψ̄(r). (8)

Recall the Poisson equation from the standard electrostatics of fixed charges and discuss its similarities and
differences with the above equation. What is the fundamental origin of the differences here?

2: Lattice Coulomb-gas model: From ionic liquids to sine-Gordon field theory. In order to describe the behavior
of Coulomb fluids containing positively and negatively charged mobile ions dispersed in a neutral background
(e.g., a solvent such as water), one is required to account for the finite size of ions and their excluded-volume
repulsions, especially when the ionic concentration is very large as, for instance, is the case in ionic liquids. This
can be done by dividing the volume of the system, V , into small equal-size cells (“lattice sites”) and allowing
only a single ion in each cell. The ions are thus placed on a three-dimensional cubic lattice with unit-cell volume
a3, representative of the volume (“size”) of a single ion (see Fig. 2).

Assume that the ions are of only two different types with equal sizes and charges ±e0, where e0 is the elementary
charge. The occupation number of each lattice site i can be denoted by the spin-like variable si taking three
different values si = +1 (when the site is occupied by a positive ion), si = −1 (when the site is occupied by a
negative ion) and si = 0 when the site is unoccupied (or, for instance, it is occupied by a water molecule). It is
clear that this kind of lattice model effectively introduces a short-range (excluded-volume) repulsion between
the ions preventing the oppositely charged ones from collapsing onto one another because of their Coulomb
attraction.

We proceed by assuming that the system is in equilibrium with a bulk reservoir of positively and negatively
charged ions with chemical potentials µ+ and µ−, respectively. The microscopic Hamiltonian of the above
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Figure 2. Schematic two-dimensional view of a lattice Coulomb-gas model consisting of equal-size positively and negatively
charged ions. For further details, see Problem 2.

lattice Coulomb-gas model can be written as

H =
e2

0

4πεε0

∑
i6=j

sisj
|ri − rj |

+
∑
i

µis
2
i , (9)

where ε is the effective dielectric constant of the background medium, ε0 is the permittivity of vacuum and ri
is the position of the ion i.

(i) Using the Hubbard-Stratonovich transformation show that the (grand-canonical) partition function of this
system is given, in the continuum limit, by the following field “action”:

S[ϕ(r)] =
εε0

2

∫
dr (∇ϕ)

2 − kBT

a3

∫
V

dr ln
(

1 + λ+e
−iβe0ϕ(r) + λ−e

iβe0ϕ(r)
)
, (10)

where the integral in the last term runs only over the volume V available to the ions and λ± = eβµ± are the
fugacities of the two charge species.

(ii) Express the average total number of positive and negative ions in the system in terms of ensemble averages
over the fluctuating potential field ϕ(r).

(iii) The bulk reservoir must be electroneutral and, thus, the total number of positive and negative ions in the
bulk must be equal, N+ = N− = N/2. Note also that the potential field in the bulk can be set equal to zero.
Using the result from part (ii), show that the fugacities must be equal, λ+ = λ− = λ, where

λ =
1

2

φ0

1− φ0
, (11)

and φ0 = Na3/V is the “volume fraction” occupied by ions. Hence, the field “action” can be re-expressed as

S[ϕ(r)] =
εε0

2

∫
dr (∇ϕ)

2 − kBT

a3

∫
V

dr ln
(
1 + 2λ cos(βe0ϕ)

)
. (12)

(iv) Discuss the limiting forms of the field “action” in the full-packing (φ0 → 1−) and in the infinite-dilution
(φ0 → 0) limits. In the latter case, show that the above model reproduces the sine-Gordon field theory
obtained in class for an off-lattice Coulomb fluid consisting of point-like negative and positive mobile ions
whose excluded-volume repulsions (ion-size effects) can be neglected.


