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1: n-vector or O(n) model. This model is defined by considering classical, n-component spin variables Si =(
S1
i , . . . , S

n
i

)
on the lattice sites i = (i1, . . . , id) of a d-dimensional regular lattice with the interaction Hamilto-

nian

H = −1

2

∑
i,j

Jij Si · Sj −
∑
i

hi · Si, (1)

where Jij is the exchange energy for given lattice sites i and j and hi is the local external field. It is assumed
that the spin variables at each lattice site can take continuous values with fixed magnitude normalized as
|Si|2 =

∑n
α=1(Sαi )2 = n.

(i) Argue that for the cases n = 1, 2 and 3 the above model corresponds to the standard spin-1/2 Ising, XY
and classical Heisenberg models, respectively, provided that the spin interactions are only allowed between the
nearest-neighbor lattice sites.

(ii) Using the Hubbard-Stratonovich transformation show that the partition function of this model can be
mapped exactly to the following lattice field theory :

ZN = CJ

∫ (∏
i

dψψψi

)
e−βS[{ψψψi},{hi}], (2)

where ψψψi is an unconstrained n-component fluctuating field at site i and the effective Hamiltonian (“action”):

S =
1

2

∑
i,j

J−1ij ψψψi ·ψψψj −
1

β
ln trS e

β
∑

i(hi+ψψψi)·Si , (3)

where we have used the standard definition
∑

k J
−1
ik Jkj = δij and trS denotes the tracing (summation) over

permissible spin states. Note also that CJ ∝ [det(βĴ)]−1/2, where Ĵ is a large matrix describing the coupling
between spin components across the whole lattice as required.

(iii) Derive explicit expressions for the trace-term trS e
β
∑

i(hi+ψψψi)·Si by taking a constant external field hi = h0z
for the cases n = 1, 2 and 3.

(iv) By a shift of variable ψψψi → ψψψi − hi show that:

〈Si〉 =
1

β

∂ lnZN
∂hi

=
∑
j

J−1ij

〈
ψψψj

〉
−
∑
j

J−1ij hj (4)

What is this result telling us about the physical meaning of the field ψψψi?

(v) For later convenience define the following field:

ϕϕϕi =
∑
j

J−1ij ψψψj (5)

Write down the partition function in terms of this new field (remember to keep the shifting that we performed
previously). What is the physical meaning of the field ϕϕϕi?

(vi) In order to derive the expression in part (ii) one needs to assume that Ĵ is a positive-definite matrix. This
is obviously not the case for the standard nearest-neighbor models mentioned above. Explain why?

(vii) Show that it is always possible to redefine the spin coupling matrix as Ĵ ′ = Ĵ+J01̂, where J0 is a constant

and 1̂ is an identity matrix of the same dimension as Ĵ , such that Ĵ ′ is a positive-definite matrix. You can
do this by considering any of the cases n =1, 2 and 3 (spin-1/2 Ising, XY and Heisenberg) explicitly. Can
the foregoing procedure be used to ensure the positivity of the spin coupling matrix in the case of spin-1 Ising
model?
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(viii) In the continuum limit, the lattice fields ϕϕϕi and hi can be mapped to continuous fields ϕϕϕ(x) and h(x)
in space and Jij can be mapped to a continuous interaction kernel J(x,x′). What is the relation between
{ϕϕϕi,hi, Jij} and {ϕϕϕ(x),h(x), J(x,x′)}?
(ix) Argue that for a homogeneous and isotropic system, J(x,x′) = f(|x−x′|) for a known function f(x). Now
assume the original interaction in the discrete model has been of the nearest-neighbor type and by expanding
the function f show that the field “action” can be written in general as a sum of a free-field and an interaction
part, that is, in the absence of external field (h = 0), S[ϕϕϕ] = S0[ϕϕϕ] + V [ϕϕϕ], where ϕϕϕ = (ϕ1, . . . , ϕn) and

S0[ϕϕϕ] =

∫
ddx

n∑
α=1

[
K

2
(∇ϕα)

2
+
t

2
ϕ2
α

]
. (6)

Find the explicit form of V [ϕϕϕ] for the cases n = 1, 2 and 3.

(x) Show that for small |ϕϕϕ| and (h = 0), the action takes the following form on the leading order:

S[ϕϕϕ] =

∫
ddx

n∑
α=1

K
2

(∇ϕα)
2

+
t

2
ϕ2
α + u

n∑
β=1

ϕ2
αϕ

2
β

 , (7)

which in the Ising case (n = 1) reduces to the standard ϕ4-theory for continuous phase transitions with a scalar
order parameter. Find an expression for each of the prefactors in the above expression and show that, while K
and t are independent of n, u will depend on n.

2: Field action for a helical magnetic system. Consider a two dimensional square lattice with a classical magnetic
moment m sitting on each site. Certain types of magnetic system show helical order at low temperatures
because of anisotropic next nearest neighbor interactions

H = −J
∑
i,j

mij ·mi+1,j − J
∑
i,j

mij ·mi,j+1 + J ′
∑
i,j

mi,j ·mi+2,j , (8)

in which (i, j) determines a single site on the lattice and J, J ′ > 0.

(i) Why is this Hamiltonian representing an anisotropic system?
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(ii) Assuming m is a unit vector and the square lattice is in x− y plane we can write:

m = {sin θ cosϕ, sin θ sinϕ, cos θ}. (9)

Here mz represent the component of spins out of the plane of the lattice. Write down the Hamiltonian in terms
of variables θ and ϕ. Assuming fluctuations out of the plane of the square lattice are small write down the
Hamiltonian only in terms of variables ϕ.

(iii) With above considerations, moments are now assumed lying in the plane of the square lattice. In an
anisotropic helical-order ground state the spins in one direction (y) are aligned, while in another direction (x)
they make an angle ϑ with respect to each other (see Figure). Show that:

ϑ = arccos(J/4J ′). (10)

What restrictions on J and J ′ exist for the possibility of the existence of helical order?

(iv) Expand the Hamiltonian to fourth order (only in x-direction, why? ) in spatial derivative to obtain the
following continuum Hamiltonian:

H ≈ J

a

∫
d2x

{
(∂yϕ)2 +

a2

4

[
(∂xϕ)2 − q2

]2
+
a2

4
(∂2xϕ)2

}
(11)

and determine q in terms of ϑ and lattice constant a.

(v) What conditions must ϑ satisfy for the above continuum limit to be valid?


