Spring Semester (2016)
School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
Lecturer: Ali Naji (School of Physics, IPM)
Tutor: Bahman Roostaei (School of Physics, IPM)
Homework \#4: Continuum Limit \& Hubbard-Stratonovich Transformation (I)

1: n-vector or $O(n)$ model. This model is defined by considering classical, n-component spin variables $\mathbf{S}_{\mathbf{i}}=$ $\left(S_{\mathbf{i}}^{1}, \ldots, S_{\mathbf{i}}^{n}\right)$ on the lattice sites $\mathbf{i}=\left(i_{1}, \ldots, i_{d}\right)$ of a d-dimensional regular lattice with the interaction Hamiltonian

$$
\begin{equation*}
\mathcal{H}=-\frac{1}{2} \sum_{\mathbf{i}, \mathbf{j}} J_{\mathbf{i j}} \mathbf{S}_{\mathbf{i}} \cdot \mathbf{S}_{\mathbf{j}}-\sum_{\mathbf{i}} \mathbf{h}_{\mathbf{i}} \cdot \mathbf{S}_{\mathbf{i}} \tag{1}
\end{equation*}
$$

where $J_{\mathbf{i j}}$ is the exchange energy for given lattice sites \mathbf{i} and \mathbf{j} and $\mathbf{h}_{\mathbf{i}}$ is the local external field. It is assumed that the spin variables at each lattice site can take continuous values with fixed magnitude normalized as $\left|\mathbf{S}_{\mathbf{i}}\right|^{2}=\sum_{\alpha=1}^{n}\left(S_{\mathbf{i}}^{\alpha}\right)^{2}=n$.
(i) Argue that for the cases $n=1,2$ and 3 the above model corresponds to the standard spin- $1 / 2$ Ising, XY and classical Heisenberg models, respectively, provided that the spin interactions are only allowed between the nearest-neighbor lattice sites.
(ii) Using the Hubbard-Stratonovich transformation show that the partition function of this model can be mapped exactly to the following lattice field theory:

$$
\begin{equation*}
\mathcal{Z}_{N}=C_{J} \int\left(\prod_{\mathbf{i}} d \boldsymbol{\psi}_{\mathbf{i}}\right) e^{-\beta S\left[\left\{\boldsymbol{\psi}_{\mathbf{i}}\right\},\left\{\mathbf{h}_{\mathbf{i}}\right\}\right]} \tag{2}
\end{equation*}
$$

where $\boldsymbol{\psi}_{\mathbf{i}}$ is an unconstrained n-component fluctuating field at site \mathbf{i} and the effective Hamiltonian ("action"):

$$
\begin{equation*}
S=\frac{1}{2} \sum_{\mathbf{i}, \mathbf{j}} J_{\mathbf{i j}}^{-1} \boldsymbol{\psi}_{\mathbf{i}} \cdot \boldsymbol{\psi}_{\mathbf{j}}-\frac{1}{\beta} \ln \operatorname{tr}_{\mathbf{S}} e^{\beta \sum_{\mathbf{i}}\left(\mathbf{h}_{\mathbf{i}}+\boldsymbol{\psi}_{\mathbf{i}}\right) \cdot \mathbf{S}_{\mathbf{i}}} \tag{3}
\end{equation*}
$$

where we have used the standard definition $\sum_{\mathbf{k}} J_{\mathbf{i k}}^{-1} J_{\mathbf{k j}}=\delta_{\mathbf{i j}}$ and $\operatorname{tr}_{\mathbf{S}}$ denotes the tracing (summation) over permissible spin states. Note also that $C_{J} \propto[\operatorname{det}(\beta \hat{J})]^{-1 / 2}$, where \hat{J} is a large matrix describing the coupling between spin components across the whole lattice as required.
(iii) Derive explicit expressions for the trace-term $\operatorname{tr}_{\mathbf{S}} e^{\beta \sum_{\mathbf{i}}\left(\mathbf{h}_{\mathbf{i}}+\boldsymbol{\psi}_{\mathbf{i}}\right) \cdot \mathbf{S}_{\mathbf{i}}}$ by taking a constant external field $\mathbf{h}_{\mathbf{i}}=h_{0} \mathbf{z}$ for the cases $n=1,2$ and 3 .
(iv) By a shift of variable $\boldsymbol{\psi}_{\mathbf{i}} \rightarrow \boldsymbol{\psi}_{\mathbf{i}}-\mathbf{h}_{\mathbf{i}}$ show that:

$$
\begin{equation*}
\left\langle\mathbf{S}_{\mathbf{i}}\right\rangle=\frac{1}{\beta} \frac{\partial \ln \mathcal{Z}_{N}}{\partial \mathbf{h}_{\mathbf{i}}}=\sum_{\mathbf{j}} J_{\mathbf{i j}}^{-1}\left\langle\psi_{\mathbf{j}}\right\rangle-\sum_{\mathbf{j}} J_{\mathbf{i j}}^{-1} \mathbf{h}_{\mathbf{j}} \tag{4}
\end{equation*}
$$

What is this result telling us about the physical meaning of the field $\boldsymbol{\psi}_{\mathrm{i}}$?
(v) For later convenience define the following field:

$$
\begin{equation*}
\varphi_{\mathrm{i}}=\sum_{\mathrm{j}} J_{\mathrm{ij}}^{-1} \psi_{\mathrm{j}} \tag{5}
\end{equation*}
$$

Write down the partition function in terms of this new field (remember to keep the shifting that we performed previously). What is the physical meaning of the field φ_{i} ?
(vi) In order to derive the expression in part (ii) one needs to assume that \hat{J} is a positive-definite matrix. This is obviously not the case for the standard nearest-neighbor models mentioned above. Explain why?
(vii) Show that it is always possible to redefine the spin coupling matrix as $\hat{J}^{\prime}=\hat{J}+J_{0} \hat{\mathbb{1}}$, where J_{0} is a constant and $\hat{\mathbb{1}}$ is an identity matrix of the same dimension as \hat{J}, such that \hat{J}^{\prime} is a positive-definite matrix. You can do this by considering any of the cases $n=1,2$ and 3 (spin- $1 / 2$ Ising, XY and Heisenberg) explicitly. Can the foregoing procedure be used to ensure the positivity of the spin coupling matrix in the case of spin- 1 Ising model?

Spring Semester (2016)
School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
Lecturer: Ali Naji (School of Physics, IPM)
Tutor: Bahman Roostaei (School of Physics, IPM)
Homework \#4: Continuum Limit \& Hubbard-Stratonovich Transformation (I) Due: April 12, 2016
(viii) In the continuum limit, the lattice fields $\varphi_{\mathbf{i}}$ and $\mathbf{h}_{\mathbf{i}}$ can be mapped to continuous fields $\varphi(\mathbf{x})$ and $\mathbf{h}(\mathbf{x})$ in space and J_{ij} can be mapped to a continuous interaction kernel $J\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$. What is the relation between $\left\{\varphi_{\mathbf{i}}, \mathbf{h}_{\mathbf{i}}, J_{\mathrm{ij}}\right\}$ and $\left\{\varphi(\mathbf{x}), \mathbf{h}(\mathbf{x}), J\left(\mathbf{x}, \mathrm{x}^{\prime}\right)\right\}$?
(ix) Argue that for a homogeneous and isotropic system, $J\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=f\left(\left|\mathbf{x}-\mathbf{x}^{\prime}\right|\right)$ for a known function $f(x)$. Now assume the original interaction in the discrete model has been of the nearest-neighbor type and by expanding the function f show that the field "action" can be written in general as a sum of a free-field and an interaction part, that is, in the absence of external field $(\mathbf{h}=\mathbf{0}), S[\varphi]=S_{0}[\varphi]+V[\varphi]$, where $\varphi=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ and

$$
\begin{equation*}
S_{0}[\varphi]=\int d^{d} x \sum_{\alpha=1}^{n}\left[\frac{K}{2}\left(\nabla \varphi_{\alpha}\right)^{2}+\frac{t}{2} \varphi_{\alpha}^{2}\right] . \tag{6}
\end{equation*}
$$

Find the explicit form of $V[\varphi]$ for the cases $n=1,2$ and 3 .
(x) Show that for small $|\boldsymbol{\varphi}|$ and $(\mathbf{h}=\mathbf{0})$, the action takes the following form on the leading order:

$$
\begin{equation*}
S[\varphi]=\int d^{d} x \sum_{\alpha=1}^{n}\left[\frac{K}{2}\left(\nabla \varphi_{\alpha}\right)^{2}+\frac{t}{2} \varphi_{\alpha}^{2}+u \sum_{\beta=1}^{n} \varphi_{\alpha}^{2} \varphi_{\beta}^{2}\right], \tag{7}
\end{equation*}
$$

which in the Ising case ($n=1$) reduces to the standard φ^{4}-theory for continuous phase transitions with a scalar order parameter. Find an expression for each of the prefactors in the above expression and show that, while K and t are independent of n, u will depend on n.

2: Field action for a helical magnetic system. Consider a two dimensional square lattice with a classical magnetic moment \mathbf{m} sitting on each site. Certain types of magnetic system show helical order at low temperatures because of anisotropic next nearest neighbor interactions

$$
\begin{equation*}
\mathcal{H}=-J \sum_{i, j} \mathbf{m}_{i j} \cdot \mathbf{m}_{i+1, j}-J \sum_{i, j} \mathbf{m}_{i j} \cdot \mathbf{m}_{i, j+1}+J^{\prime} \sum_{i, j} \mathbf{m}_{i, j} \cdot \mathbf{m}_{i+2, j} \tag{8}
\end{equation*}
$$

in which (i, j) determines a single site on the lattice and $J, J^{\prime}>0$.
(i) Why is this Hamiltonian representing an anisotropic system?

School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
Lecturer: Ali Naji (School of Physics, IPM)
Tutor: Bahman Roostaei (School of Physics, IPM)
Homework \#4: Continuum Limit \& Hubbard-Stratonovich Transformation (I) Due: April 12, 2016
(ii) Assuming \mathbf{m} is a unit vector and the square lattice is in $x-y$ plane we can write:

$$
\begin{equation*}
\mathbf{m}=\{\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta\} . \tag{9}
\end{equation*}
$$

Here m_{z} represent the component of spins out of the plane of the lattice. Write down the Hamiltonian in terms of variables θ and φ. Assuming fluctuations out of the plane of the square lattice are small write down the Hamiltonian only in terms of variables φ.
(iii) With above considerations, moments are now assumed lying in the plane of the square lattice. In an anisotropic helical-order ground state the spins in one direction (y) are aligned, while in another direction (x) they make an angle ϑ with respect to each other (see Figure). Show that:

$$
\begin{equation*}
\vartheta=\arccos \left(J / 4 J^{\prime}\right) \tag{10}
\end{equation*}
$$

What restrictions on J and J^{\prime} exist for the possibility of the existence of helical order?
(iv) Expand the Hamiltonian to fourth order (only in x-direction, why?) in spatial derivative to obtain the following continuum Hamiltonian:

$$
\begin{equation*}
\mathcal{H} \approx \frac{J}{a} \int d^{2} x\left\{\left(\partial_{y} \varphi\right)^{2}+\frac{a^{2}}{4}\left[\left(\partial_{x} \varphi\right)^{2}-q^{2}\right]^{2}+\frac{a^{2}}{4}\left(\partial_{x}^{2} \varphi\right)^{2}\right\} \tag{11}
\end{equation*}
$$

and determine q in terms of ϑ and lattice constant a.
(v) What conditions must ϑ satisfy for the above continuum limit to be valid?

