Spring Semester (2016)
School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
Lecturer: Ali Naji (School of Physics, IPM)
Tutor: Bahman Roostaei (School of Physics, IPM)
Homework \#14: Phase Transitions \& Critical Phenomena: Momentum-space RG Due: July 30, 2016

Note: References from which the following problem has been adopted are available upon request.
1: Consider the Landau-Ginzburg Hamiltonian involving a two-component order parameter $\varphi=\left(\varphi_{1}, \varphi_{2}\right)$:

$$
\begin{equation*}
\beta \mathcal{H}[\boldsymbol{\varphi}]=\sum_{i=1}^{2} \int d^{d} x\left\{\frac{1}{2}\left(\nabla \varphi_{i}\right)^{2}+\frac{r}{2} \varphi_{i}^{2}+g_{1} \varphi_{i}^{4}\right\}+g_{2} \int d^{d} x \varphi_{1}^{2} \varphi_{2}^{2} . \tag{1}
\end{equation*}
$$

This model has the appropriate symmetry to describe a structural phase transition in a crystal with a fourthorder axis. The order parameters φ_{1} and φ_{2} may be interpreted as a projection of the atomic position onto a coordinate system normal to this axis.
(i) Assuming $g_{1}>0$ and putting $\Gamma=g_{2} / g_{1}$, study the different phases of the system as a function of r and Γ within the mean-field (saddle-point) approximation. Show that for $r<0$, spontaneous symmetry breaking occurs, such that

$$
\begin{align*}
\Gamma>2: & \varphi_{1} \neq 0, \varphi_{2}=0 \text { or } \varphi_{2} \neq 0, \varphi_{1}=0 \tag{2}\\
-2<\Gamma<2: & \varphi_{1}= \pm \varphi_{2} .
\end{align*}
$$

Show that the system is thermodynamically unstable for $\Gamma<-2$. Draw a phase diagram in the $r-\Gamma$ plane, indicating phase boundaries of first- and second-order phase transitions.
(ii) Using Wilson's perturbative momentum-space RG analysis (in three standard steps of coarse-graining, rescaling and renormalizing), and taking advantage of Feynman's diagrammatic representation, derive the following RG equations for the coupling constants g_{1} and g_{2} :

$$
\begin{align*}
& \frac{d g_{1}}{d \tau}=\epsilon g_{1}-A\left(36 g_{1}^{2}+g_{2}^{2}\right) \\
& \frac{d g_{2}}{d \tau}=\epsilon g_{2}-A\left(24 g_{1} g_{2}+8 g_{2}^{2}\right) \tag{3}
\end{align*}
$$

where A is a constant, $\epsilon=4-d$ and we have defined $\tau=\log \ell$, where ℓ is the factor by which the unit of length is increased within the RG transformation.
(iii) Using the dimensionless parameters

$$
\begin{equation*}
\rho=r \Lambda^{-2}, \Gamma=g_{2} / g_{1}, \gamma=g_{1} \Lambda^{-\epsilon} \tag{4}
\end{equation*}
$$

where Λ is a UV cut-off (and after an appropriate redefinition of the parameters), show that

$$
\begin{align*}
& \frac{d \rho}{d \tau}=2 \rho+12(1-\rho)(1+\Gamma / 6) \gamma \\
& \frac{d \Gamma}{d \tau}=\Gamma(\Gamma-2)(\Gamma-6) \gamma \\
& \frac{d \gamma}{d \tau}=\gamma\left[\epsilon-\gamma\left(36+\Gamma^{2}\right)\right] \tag{5}
\end{align*}
$$

(iv) Using the method of ϵ-expansion, investigate the fixed points and their stabilities and determine the corresponding critical exponents to first order in ϵ.
(v) Discuss possible generalization of the above problem to the case of an n-component order parameter $\varphi=$ $\left(\varphi_{1}, \ldots, \varphi_{n}\right)$. Note that this generalization leads to an anisotropic n-vector model with the Landau-Ginzburg Hamiltonian

$$
\begin{equation*}
\beta \mathcal{H}[\boldsymbol{\varphi}]=\int d^{d} x\left\{\sum_{i}\left[\frac{1}{2}\left(\nabla \varphi_{i}\right)^{2}+\frac{r}{2} \varphi_{i}^{2}\right]+u\left(\sum_{i} \varphi_{i}^{2}\right)^{2}+v \sum_{i} \varphi_{i}^{4}\right\} \tag{6}
\end{equation*}
$$

For extra credit: Apply the RG transformation to the above Hamiltonian, investigate the fixed points and their stabilities, and determine the corresponding critical exponents for the anisotropic n-vector model.

