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Note: References from which some of the following problems have been taken are available upon request.

1: Tricritical point. In systems with more than one (non-ordering) control parameters, phase diagrams become
multidimensional and one may encounter critical points that can be reached only by tuning two or more such
control parameters. In the following example, one such point occurs in the phase diagram, where a second-order
transition line meets a first-order transition line. This point is known as the tricritical point.

(i) Consider the Landau-Ginzburg “Hamiltonian”

βH =

∫

ddx

[

K

2
(∇ϕ)2 +

t

2
ϕ2 + uϕ4 + vϕ6 − hϕ

]

, (1)

where t and u can be positive or negative and v > 0. By sketching the (free) energy density for various t, show
that in the mean-field approximation there is a first-order transition for u < 0 and h = 0 and a second-order
transition for u > 0 and h = 0.

(ii) For h = 0 and v > 0, plot the phase boundaries in the (u, t) plane, identifying the phases and order of the
phase transitions.

(iii) Show that u = t = 0 is the tricritical point in this system. For u = 0, calculate the tricritical exponents
β, δ, γ and α (governing the singularities in magnetization, critical isotherm, susceptibility and heat capacity,
respectively) and compare them with those of the scalar ϕ4-model.

2: Mean-field theory of the 3-state Potts model. The ferromagnetic 3-state Potts model is defined by the Hamiltonian,

H = −J
∑

⟨ij⟩

δsisj , (2)

where J > 0 and the indices i and j run over (nearest-neighbor) lattice sites, and the “Potts spin”, si, takes
three different values, si = 1, 2, 3.

(i) Calculate the free energy of this system within the mean-field approximation by assuming that, independently
of the other spins, every spin points with probability pq in direction si = q, where q = 1, 2, 3. Express the free
energy density in terms of the magnetizations, mq = pq − 1/3, and show that it can be approximated by

βf ≃
3

∑

q=1

[(

3

2
−

Jz

2kBT

)

m2
q −

3

2
m3

q +
9

4
m4

q + . . .

]

, (3)

where z is the number of nearest neighbors.

(ii) Introduce the variables, µ1 = (m2−m3)/2 and µ2 = (2m1−m2−m3)/6, and express the above free energy
expression in terms of these variables. Evaluate this approximate free energy numerically as a function of these
two variables and show, by producing contour plots, that the free energy develops three symmetrical minima
in the ordered phase, T < Tc, through a first-order transition. Therefore, the ferromagnetic phase transition in
the mean-field theory of this model is found to be of the first order!

(iii) Determine numerically the mean-field value of Tc. Hint: Consider the free energy obtained in part (i)
along the special direction, m1 = m,m3 = m2 = −m/2.

3: Tricritical point in an antiferromagnet in a field. An external magnetic field h in an antiferromagnet couples to
the magnetization m rather than to the order parameter, which is the so-called staggered magnetization, ms.
Assume that the coupling between ms and m is described phenomenologically via the free energy density

f =
r

2
m2

s + um4
s +

rm
2
m2 − hm+

w

2
m2

sm
2, (4)

where r = a(T − T ∗), w > 0, and rm is independent of temperature.
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(i) Argue that the above mean-field free energy describes an antiferromagnetic transition. (Hint: For m = 0
show that it represents a transition from ms = 0 to ms ̸= 0; what is the transition temperature and what
happens if ms = 0?)

(ii) Show that this model has a tricritical point at temperature Tt and field ht, where

Tt = T ∗ −
2urm
aw

, (5)

h2
t =

2ur3m
w2

. (6)

4: Ginzburg-Landau theory of superconductivity. The Ginzburg-Landau theory of superconductivity addresses the
interaction between a complex superconducting wave-function Ψ and a static magnetic field B = ∇×A. The
wave-function is not that of individual electrons, but rather that of a condensate of Cooper pairs that are pairs
of loosely bound electrons. Its modulus square represents the density ns of Cooper pairs, ns = |Ψ|2. The
condensate wave-function vanishes above the critical temperature Tc and is non-zero below Tc. One postulates
a thermodynamic potential

f − fN =

∫

d3x

(

t

2
|Ψ|2 + u|Ψ|4 +

1

2m

∣

∣ (−i!∇− qA)Ψ
∣

∣

2
+

1

2µ0
B2 −

1

µ0
H ·B

)

, (7)

where H is the induction, fN is the thermodynamical potential of the normal phase, m and q are the mass
and charge of the Cooper pairs. The coefficient b is always positive, but a changes sign at T = Tc and becomes
negative for T < Tc, so that |Ψ| is non-zero below the critical temperature.

(i) Show that f is invariant under the local gauge transformation:

Ψ(x) → Ψ′(x) = e−iqΛ(x)/!Ψ(x), (8)

A(x) → A′(x) = A(x) −∇Λ(x). (9)

(ii) Show that the minimization of the free energy lead to the equations of motion,

1

2m
(−i!∇− qA)2 Ψ+

t

2
Ψ+ 2uΨ|Ψ|2 = 0, (10)

−
i!qµ0

2m
[Ψ∗∇Ψ−Ψ∇Ψ∗]−

µ0q2

m
A|Ψ|2 = ∇×B, (11)

and the boundary conditions,

n× (B−H) = 0, n · (−i!∇− qA)Ψ = 0, (12)

where n is a unit vector perpendicular to the surface separating the normal and the superconducting phases.

(iii) In a uniform situation, where |Ψ|2 = −t/(4u), show that superconductivity is destroyed by a magnetic
induction H if

H2 ≥ H2
c (T ) =

µ0t2

8u
. (13)

(iv) If B = 0 in a one-dimensional geometry, show that in a normal superconducting junction the order
parameter increases as

Ψ(z) =

√

|t|
4u

tanh
z√
2ξ

, (14)

where ξ = (2m|t|/!2)−1/2 is the coherence length.


