Course on "Advanced Statistical Physics"

School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran Spring Semester 2016 (1394-95)

Lecturer: Ali Naji (School of Physics, IPM)

Office: Room 503, Farmanieh Central Building (IPM) Email: a.naji@ipm.ir; Tel: +98-21-22280692 ext. 3039

• Outline of the course:

✤ Part I — Equilibrium Statistical Physics

• Foundations: Closed (and quasi-closed) systems

- Phase space, micro-states and statistical distributions
- Statistical averages and ergodicity
- Equilibrium, equilibrium fluctuations, and statistical independence
- Liouville's theorem and the concept of statistical ensemble
- Microcanonical distribution for classical and quantum statistics
- Partial equilibrium and the concept of macro-states
- Entropy and its properties in equilibrium
- The law of increase of entropy (the second law of thermodynamics)

Thermodynamics

- Temperature and its positiveness
- Adiabatic processes and generalized thermodynamic forces
- Work, heat, and the first law of thermodynamics
- Thermodynamic potentials
- Maxwell and other thermodynamic relations
- Thermodynamic inequalities and stability criteria
- Nernst's theorem and the third law of thermodynamics

• Canonical & grand-canonical distributions

- Canonical Gibbs distribution
- Maxwell-Boltzmann distribution
- Monatomic ideal gases
- Harmonic oscillators
- Law of equipartition
- Diatomic and polyatomic gases
- Grand-canonical Gibbs distribution

Quantum statistics

- Fermi-Dirac & Bose-Einstein distributions
- Degenerate Fermi gas
- Degenerate Bose gas
- Bose-Einstein condensation

- Black-body radiation
- Vibrations of a solid

• Interacting classical fluids I

- Thermodynamics and the radial distribution function
- Virial expansion and cluster functions
- Second and third virial coefficients
 - Hard-sphere, square-well & Lennard-Jones potentials
- Higher-order virial coefficients
- Van der Waals equation of state and liquid-vapor transition
- Special topics (*if time permits*)
 - Static structure factor
 - Yvon–Born–Green hierarchy
 - Integral equations and hypernetted-chain approximation
 - Ornstein-Zernike equation
 - Percus-Yevick equation
 - Mean spherical approximation
- Interacting classical fluids II Coulomb fluids
 - Coulomb interactions in soft matter and biology (*slides presentation*)
 - Coulomb fluids: The primitive model
 - Mean-field theory: The Poisson-Boltzmann equation
 - Debye-Huckel approximation
 - Limiting laws and correlation correction for bulk electrolytes
 - Electrical double layer: The Gouy-Chapman (mean-field) theory
 - Colloidal interactions (*slides presentation*)
 - DLVO theory
 - Confined Coulomb fluids from weak fluctuations to strong couplings
 - Recent advances in theory and simulations

✤ Part II — Equilibrium phase transitions and critical phenomena

- Generalities, brief history and modern examples (slides presentation)
 - Bulk phases and phase transitions: Simple fluids & ferromagnets
 - Criticality, scaling & universality: Experiments and simulations
 - Classifications of (bulk) phase transitions
 - Multicritical points & other features of phase diagrams
 - Order parameter & broken symmetry
 - Modern examples from liquid crystals to superfluids & superconductors
 - Spin and particle models: From classical to modern examples
- Widom scaling hypothesis
 - Homogeneous functions
 - Scale invariance & scaling exponents

Ising model

- Exact solutions
- Mean-field theory: Weiss molecular field & Bragg-Williams approximation
- Kadanoff block spins & Widom scaling

• Real-space renormalization group (RG)

- Wilson block spins, renormalization & fixed points
- Ising model revisited: RG in one and two dimensions

Landau mean-field theory

- Landau-Ginzburg phenomenology
- φ⁴ theory: Spontaneous symmetry breaking
- Thermodynamic limit and ergodicity breaking
- Discontinuous *vs* continuous transition (first *vs* second order)
- ϕ^6 theory: Tricritical point & other aspects

Gaussian fluctuations

- Correlation functions & susceptibilities
- Fluctuation corrections to mean field & the upper critical dimension
- Ginzburg criterion
- Discrete symmetry breaking: Domain walls
- Continuous symmetry breaking: Goldstone modes
- Lower critical dimension & the Mermin-Wagner theorem

✤ Part III — Non-equilibrium Statistical Physics

• Kinetic Theory & Hydrodynamics

- Boltzmann equation
- Hydrodynamic limit: The Navier-Stokes equations
- Special topics (*if time permits*)
 - Hydrodynamic fluctuations near equilibrium
 - Linearized hydrodynamics and hydrodynamic collective modes
 - Transport coefficients and Onsager's relations
 - Linear response theory and the fluctuation-dissipation theorem

• Dissipative dynamics of particles

- Random walks and Brownian motion
- Theory of stochastic processes: A brief review
- Langevin equation
- Fokker-Planck equation